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Cytoplasmic TDP-43 mislocalization and aggregation is a pathological hallmark of amyo-
trophic lateral sclerosis and frontotemporal lobar degeneration. TDP-43 is an RNA-binding
protein (RBP) with a prion-like domain (PrLD) that promotes TDP-43 misfolding. PrLDs
possess compositional similarity to canonical prion domains of various yeast proteins,
including Sup35. Strikingly, disease-causing TDP-43 mutations reside almost exclusively
in the PrLD and can enhance TDP-43 misfolding and toxicity. Another �70 human RBPs
harbor PrLDs, including FUS, TAF15, EWSR1, hnRNPA1, and hnRNPA2, which have sur-
faced in the etiology of neurodegenerative diseases. Importantly, PrLDs enable RBP func-
tion and mediate phase transitions that partition functional ribonucleoprotein compart-
ments. This PrLD activity, however, renders RBPs prone to populating deleterious
oligomers or self-templating fibrils that might spread disease, and disease-linked PrLD
mutations can exacerbate this risk. Several strategies have emerged to counter TDP-43
proteinopathies, including engineering enhanced protein disaggregases based on Hsp104.

One of the greatest biomedical challenges of
ourera lies in the daunting reality that there

continues to be no effective therapies for several
ineluctably fatal and increasingly common neu-
rodegenerative disorders connected with pro-
tein misfolding, soluble toxic oligomers, and
aberrant protein aggregation (Cushman et al.
2010; Eisenberg and Jucker 2012; Prusiner
2013). One of these debilitating neurodegener-
ative disorders, amyotrophic lateral sclerosis
(ALS), is the most common adult motor neuron
disease, afflicting �2 individuals per 100,000,
with typical onset between 50–60 years of age
(Robberecht and Philips 2013). Upon progres-
sion, ALS is distinguished by an unrelenting

devastation of upper and lower motor neurons
(Robberecht and Philips 2013). This neurode-
generation leads to progressive weakness, mus-
cular wasting, and spasticity, which culminates
in paralysis, denervation of respiratory muscles,
and typically death within �3–5 years (Robbe-
recht and Philips 2013). There are no effective
therapies for ALS, although riluzole can some-
times extend survival by �2–3 months (Bensi-
mon et al. 1994). Riluzole efficacy is limited and
is further compounded by poor central nervous
system bioavailability (Jablonski et al. 2014).
The lack of treatment options is unacceptable,
and we are in urgent need of effective therapeu-
tics (Zinman and Cudkowicz 2011).
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A neuropathological hallmark of ALS is the
accumulation of nonamyloid, ubiquitin-posi-
tive inclusions in the cytoplasm of degenerating
motor neurons and glia (Gros-Louis et al. 2006;
Neumann et al. 2006; Pasinelli and Brown 2006;
Kwong et al. 2008). The identity of the protein
found in these inclusions varies depending on
the specific form of ALS. ALS is mostly a spora-
dic disease (sALS), but �10% of ALS cases are
familial (fALS) (Rowland and Shneider 2001;
Renton et al. 2014). Mutations in SOD1, the
gene encoding Cu/Zn superoxide dismutase
(Gros-Louis et al. 2006; Pasinelli and Brown
2006), have been identified in �20% of fALS
cases for an overall incidence of �2% (Valentine
and Hart 2003). In these cases, SOD1 is found
in protein inclusions in afflicted neurons (Ro-
tunno and Bosco 2013). However, whether
wild-type (WT) SOD1 misfolds and contributes
to sALS remains uncertain (Rotunno and Bos-
co 2013). Regardless, neurons of ALS patients
without SOD1 mutations contain numerous
ubiquitin-positive inclusions that are SOD1
negative (Mackenzie et al. 2007), suggesting
the presence of additional pathological proteins.

It is now clear that in the vast majority of
sALS and fALS cases (�97%) these protein in-
clusions are comprised of the RNA-binding
protein (RBP) TDP-43 (Arai et al. 2006; Neu-
mann et al. 2006; Davidson et al. 2007; Seelaar
et al. 2007; Tan et al. 2007; Lagier-Tourenne and
Cleveland 2009; Lagier-Tourenne et al. 2010;
Ling et al. 2013). Indeed, mutations in eight
different genes connected to ALS, TARDP,
C9ORF72, PGRN, VCP, UBQLN2, ANG,
OPTN, and NIPA1, result in TDP-43 protein-
opathy (Lee et al. 2012; Robberecht and Philips
2013; Renton et al. 2014). However, in some
ALS cases, neither TDP-43 nor SOD1 aggre-
gates, but instead another RBP, FUS, forms cy-
toplasmic aggregates. TDP-43 and FUS pathol-
ogy are mutually exclusive (Neumann et al.
2009; Vance et al. 2009; Hewitt et al. 2010; Mac-
kenzie et al. 2010; Seelaar et al. 2010). Thus, two
ubiquitously expressed and predominantly nu-
clear RBPs, TDP-43 and FUS, have risen to
prominence in ALS (Neumann et al. 2006;
Kwiatkowski et al. 2009; Lagier-Tourenne and
Cleveland 2009; Vance et al. 2009; Lagier-Tou-

renne et al. 2010; Da Cruz and Cleveland 2011;
Robberecht and Philips 2013). Importantly,
mutations in the genes that encode TDP-43
and FUS cause �10% of fALS cases (Da Cruz
and Cleveland 2011; Renton et al. 2014). TDP-
43 and FUS are of particular interest because
they are aggregated in the cytoplasm of sALS
cases (Neumann et al. 2006; Pesiridis et al.
2009; Deng et al. 2010; Hewitt et al. 2010; Rade-
makers et al. 2010; Fujita et al. 2011; see also
Mackenzie and Neumann 2016; Nonaka and
Hasegawa 2016).

It is important to note that TDP-43, FUS,
and SOD1 are not the only proteins that misfold
and aggregate in ALS. Depending on the precise
form of the disease, in addition to TDP-43
pathology, other RBPs can also form inclu-
sions, including TAF15, EWSR1, hnRNPA1,
hnRNPA2, and hnRNPA3 (Couthouis et al.
2011, 2012; Kim et al. 2013; Mori et al. 2013b).
Moreover, the most common genetic cause of
ALS is a massive expansion of the GGGGCC
hexanucleotide repeat in the first intron of the
C9ORF72 gene (DeJesus-Hernandez et al. 2011;
Renton et al. 2011, 2014). The first intron of the
C9ORF72 gene contains a polymorphic hexanu-
cleotide repeat, GGGGCC (DeJesus-Hernandez
et al. 2011; Renton et al. 2011). The repeat tract
length in unaffected individuals (although var-
iable) is typically between �5 and 10 repeats
and is almost always fewer than �23 repeats (De-
Jesus-Hernandez et al. 2011; Renton et al. 2011;
Rohrer et al. 2015). In C9ORF72-ALS cases, the
hexanucleotide repeat tract is expanded to hun-
dreds or even thousands of repeats, which cause
impairments in nucleocytoplasmic transport
(Acharya et al. 2006; DeJesus-Hernandez et al.
2011; Renton et al. 2011, 2014; Fox and Tibbetts
2015; Freibaum et al. 2015; Jovicic et al. 2015;
Rohrer et al. 2015; Zhang et al. 2015). Intrigu-
ingly, the pathogenic GGGGCC repeat expan-
sion can be translated, even in the absence of
an ATG start codon and even though it is located
in a noncoding region of C9ORF72 (Mori et al.
2013a,c). This unconventional repeat-associat-
ed non-ATG translation (Zu et al. 2011) occurs
in all sense and antisense reading frames, pro-
ducing polymers of the predicted dipeptides
(sense: GGG GCC ¼ Gly-Ala; GGG CCG ¼
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Gly-Pro; GGC CGG ¼ Gly-Arg; antisense: CCC
CGG ¼ Pro-Arg; CCC GGC ¼ Pro-Gly; CCG
GCC ¼ Pro-Ala) (Mackenzie et al. 2013; Mori
et al. 2013a,c; Zu et al. 2013). Remarkably, these
various dipeptide repeat proteins form cytoplas-
mic inclusions in neurons of ALS and fronto-
temporal lobar degeneration (FTLD) patients
with the C9ORF72 GGGGCC repeat expansion
mutation, but not in ALS cases without the
C9ORF72 GGGGCC repeat expansion (Mac-
kenzie et al. 2013; Mori et al. 2013a,c; Zu et al.
2013). Moreover, poly-GA, poly-GR, and poly-
PR are highly toxic in model systems indepen-
dent of the GGGGCC repeat expansion, and
poly-GR and poly-PR can directly impair nucle-
ocytoplasmic transport (Kwon et al. 2014; May
et al. 2014; Mizielinska et al. 2014; Paul and Git-
ler 2014; Wen et al. 2014; Jovicic et al. 2015; Tao
et al. 2015; Tran et al. 2015). Thus, multiple pro-
teins are misfolded and aggregated in ALS, and
the precise set of affected proteins depends on
the underlying cause of disease.

Just as other proteins can be aggregated in
ALS, TDP-43 misfolds and aggregates in other
neurodegenerative diseases as well. Indeed, pa-
thology and genetics have also connected TDP-
43 misfolding to a subset of FTLD cases (FTLD-
TDP) (Arai et al. 2006; Neumann et al. 2006;
Mackenzie et al. 2010; Robberecht and Philips
2013). FTLD is a devastating neurodegenerative
disorder characterized by progressive loss of
neurons in the frontal and temporal lobes (Ir-
win et al. 2015). This neurodegeneration pre-
dominantly affects behavior, social awareness,
and language and is marked by a severe deteri-
oration in functioning and typically death �8
years after the onset of symptoms (Irwin et al.
2015). As with ALS, in FTLD-TDP, TDP-43 is
mislocalized to cytoplasmic inclusions and de-
pleted from the nucleus in afflicted neurons
(Arai et al. 2006; Neumann et al. 2009; Macken-
zie et al. 2010; Irwin et al. 2015). Interestingly,
sometimes neurons in the prefrontal and tem-
poral cortex are also affected in ALS (�15% of
cases), and, likewise, FTLD can present with
ALS (�15% of cases) (Robberecht and Philips
2013). Thus, ALS and FTLD appear to represent
opposite ends of the clinical spectrum of a sin-
gle disease (Geser et al. 2009; Robberecht and

Philips 2013). Prominent TDP-43 cytoplasmic
mislocalization and aggregation is also evident
in Perry syndrome, Alexander disease, and mul-
tisystem proteinopathy (MSP), also known as
inclusion-body myopathy with Paget’s disease
of bone and frontotemporal dementia with
ALS (IBMPFD/ALS) (Weihl et al. 2008; Chen-
Plotkin et al. 2010; Benatar et al. 2013; Kim et al.
2013; Walker et al. 2014). Remarkably, TDP-43
pathology is a secondary feature of several other
neurodegenerative disorders, including Alz-
heimer’s disease (AD), Lewy body (LB)–related
diseases (e.g., Parkinson’s disease), and Hun-
tington’s disease (Amador-Ortiz et al. 2007; Na-
kashima-Yasuda et al. 2007; Schwab et al. 2008;
Uryu et al. 2008; Chen-Plotkin et al. 2010; Jo-
sephs et al. 2014a, 2016). TDP-43 lesions appear
to worsen several clinical and pathological pa-
rameters observed in AD and LB-related disor-
ders, indicating combinatorial effects (Naka-
shima-Yasuda et al. 2007; Josephs et al. 2014b;
Jung et al. 2014). Collectively, these advances
indicate that TDP-43 misfolding likely contrib-
utes to a broad range of neurodegenerative con-
ditions and could be an important therapeutic
target. Here, we review the biology and patho-
biology of TDP-43 and consider possible ther-
apeutic strategies to mitigate TDP-43 misfold-
ing and toxicity in disease.

TDP-43 PERFORMS DIVERSE FUNCTIONS
IN THE NUCLEUS AND CYTOPLASM

TDP-43 is a 414 amino acid RBP bearing two
RNA-recognition motifs (RRMs): RRM1 (ami-
no acids 105–169) and RRM2 (amino acids
193–253) (Fig. 1A) (Buratti and Baralle
2001). TDP-43 displays specificity for UG-rich
RNA and TG-rich DNA (Buratti and Baralle
2001; Polymenidou et al. 2011; Lukavsky et al.
2013; Qin et al. 2014). RRM2 contains a nuclear
export sequence (NES; amino acids 239–250)
(Fig. 1A) (Winton et al. 2008). The RRMs are
flanked on the N-terminal side by an N-terminal
domain (NTD; amino acids 1–78) that adopts a
ubiquitin-like fold and a canonical nuclear local-
ization sequence (NLS; amino acids 82–98), and
they are flanked on the C-terminal side by a low
complexity prion-like domain (PrLD; amino
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acids 277–414) (Fig. 1A) (Winton et al. 2008;
Cushman et al. 2010; Fuentealba et al. 2010;
Couthouis et al. 2011; King et al. 2012; Li et al.
2013; Qin et al. 2014; Mompean et al. 2016).

TDP-43 is an essential gene in mammals,
zebrafish, and flies (but curiously is not essen-
tial in Caenorhabditis elegans). It is broadly ex-
pressed and, under normal conditions, resides
predominantly in the nucleus but shuttles to
and from the cytoplasm (Ayala et al. 2008; Win-
ton et al. 2008; Feiguin et al. 2009; Lu et al. 2009;
Chiang et al. 2010; Kraemer et al. 2010; Sephton
et al. 2010; Zhang et al. 2012; Schmid et al.
2013). TDP-43 expression level is very tightly
regulated (Ayala et al. 2011; Polymenidou
et al. 2011). Indeed, overexpression of TDP-43
is connected with FTLD (Gitcho et al. 2009) and
is detrimental in diverse model systems (John-
son et al. 2008; Ash et al. 2010; Elden et al. 2010;
Tsai et al. 2010; Xu et al. 2010; Estes et al. 2011;
Igaz et al. 2011; Zhang et al. 2011). TDP-43

directly regulates its own expression by binding
to the 30UTR of its own mRNA and promoting
its degradation (Ayala et al. 2011; Polymenidou
et al. 2011; Avendano-Vazquez et al. 2012).

In the nucleus, TDP-43 performs several
important functions (Ling et al. 2013). It en-
gages promoter regions of genes and can repress
transcription (Ou et al. 1995; Acharya et al.
2006; Lalmansingh et al. 2011). As well as
directly binding DNA, TDP-43 physically inter-
acts with various proteins involved in transcrip-
tion (e.g., methyl-CpG-binding protein 2),
although proteomic analysis suggests that
TDP-43 predominantly interacts with proteins
involved in splicing and translation (Freibaum
et al. 2010; Sephton et al. 2011). However, the
precise set of genes that are regulated at the
transcriptional level by TDP-43 remains un-
clear. At the RNA level, TDP-43 performs di-
verse functions in the nucleus, which include
splicing and inhibition of exon recognition,

Dimerization
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Figure 1. TDP-43 structure. (A) Domain architecture of TDP-43. Domain boundaries are numbered according
to the full-length protein sequence. (B) Overlay of the TDP-43 N-terminal domain (NTD) structure (blue) and
ubiquitin (yellow; PDB ID code 3EHV) (Qin et al. 2014). (C) Ribbon representation of the structure of the TDP-
43 RNA-recognition motif (RRM) construct (amino acids 102–269) in complex with AUG12 RNA (PDB ID
code 4BS2) (Lukavsky et al. 2013).
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long intron binding and stabilization, micro-
RNA biogenesis, co-transcriptional limitation
of double-stranded RNA formation, inhibition
of specific RNA editing events, and binding
long noncoding RNA (Buratti and Baralle
2001; Buratti et al. 2004; Ayala et al. 2006; Poly-
menidou et al. 2011; Kawahara and Mieda-Sato
2012; Lagier-Tourenne et al. 2012; Ling et al.
2013; Saldi et al. 2014; Ling et al. 2015). TDP-
43 also performs critical RNA-binding modali-
ties in the cytoplasm related to RNA transport,
translation, and stress-granule formation (Liu-
Yesucevitz et al. 2010; Nishimoto et al. 2010;
McDonald et al. 2011; Li et al. 2013; Ling et
al. 2013; Alami et al. 2014; Coyne et al. 2014;
Liu-Yesucevitz et al. 2014). These collective nu-
clear and cytoplasmic functions are facilitated
by the RNA-binding activity of TDP-43 coupled
with interactions with numerous hnRNPs (e.g.,
hnRNPA1 and A2), microprocessor proteins
(e.g., dicer and drosha), and splicing factors
(e.g., PSF, splicing factor 3a, PTBP2) (Buratti
et al. 2005; D’Ambrogio et al. 2009; Freibaum
et al. 2010; Ling et al. 2010; Sephton et al. 2011;
Kawahara and Mieda-Sato 2012). It is estimated
that TDP-43 binds to .6000 RNA targets in the
brain, thereby impacting �30% of the tran-
scriptome (Polymenidou et al. 2011; Tollervey
et al. 2011). In the brain, TDP-43 affects the
splicing of �950 mRNAs and engages the
30UTR of .1000 mRNAs (Polymenidou et al.
2011; Tollervey et al. 2011). TDP-43 also en-
gages and stabilizes very long introns in various
pre-mRNAs and is estimated to affect the levels
of .600 mRNAs in the mammalian nervous
system (Polymenidou et al. 2011; Tollervey
et al. 2011).

TDP-43 STRUCTURE AND FUNCTION

The structure of full-length TDP-43 remains
unknown, and so precisely how TDP-43 accom-
plishes these diverse tasks remains uncertain as
well. Nonetheless, biochemical and functional
studies have yielded important insights. Several
lines of evidence suggest that TDP-43 must
form homodimers for optimal functionality,
and dimerization appears to be mediated by
the first 10 amino acids of the TDP-43 NTD

(Fig. 1A) (Johnson et al. 2009; Shiina et al.
2010; Wang et al. 2013; Zhang et al. 2013; Kuo
et al. 2014; Sun et al. 2014). Further domain
requirements for TDP-43 activity have been elu-
cidated in various functional studies. For exam-
ple, considerable interplay between RRM1 and
RRM2 contributes to complex formation with
RNA (Buratti and Baralle 2001; Lukavsky et al.
2013). Highly conserved phenylalanines in
RRM1 (F147 and F149) and RRM2 (F194,
F229, and F231) engage RNA directly, although
RRM2 makes a weaker contribution to the over-
all TDP-43 RNA-binding affinity (Buratti and
Baralle 2001; Lukavsky et al. 2013). In contrast,
the C-terminal PrLD is not typically required
for TDP-43 to bind RNA or DNA, although in
isolation the TDP-43 PrLD can directly bind
single-stranded DNA (Lim et al. 2016). None-
theless, the PrLD is critical for TDP-43 activity
in alternative splicing of some mRNAs and me-
diates protein–protein interactions with other
hnRNPs, including hnRNPA1, A2, and FUS, as
well as components of the dicer and drosha
complexes (Ayala et al. 2005; Buratti et al.
2005; D’Ambrogio et al. 2009; Kim et al. 2010;
Kawahara and Mieda-Sato 2012). However, al-
ternative splicing of other mRNAs depends
strictly on RRM1, whereas RRM2 and the
PrLD are less important (Fiesel et al. 2012).
Likewise, TDP-43 activity in transcriptional re-
pression can be mediated solely by RRM1 (Lal-
mansingh et al. 2011), whereas TDP-43 recruit-
ment to stress granules requires RRM1 and the
PrLD (Bentmann et al. 2012). Thus, a picture is
gradually emerging in which the complex mul-
tidomain architecture of TDP-43 is deployed in
various ways to enable specific functions.

Structural studies of isolated TDP-43 do-
mains have also started to yield key insights.
For example, initial studies suggested that the
isolated NTD (amino acids 1–78) adopts a nov-
el ubiquitin-like fold (Fig. 1B), even though the
primary sequence bears little resemblance to
ubiquitin (Qin et al. 2014). The significance of
this putative ubiquitin-like fold in the TDP-43
NTD remains unclear, but ubiquitin-like do-
mains in other proteins can mediate diverse
functions, including direct binding to the pro-
teasome (Madsen et al. 2007; Grabbe and Dikic

TDP-43: Biology, Pathobiology, and Therapeutics
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2009). The TDP-43 NTD engages single-strand-
ed TG-rich DNA in a sequence-specific manner,
and addition of UG-rich RNA may induce ag-
gregation of the TDP-43 NTD (Qin et al. 2014).
The role of the potential ubiquitin-like fold in
TDP-43 function and disease warrants further
study and connects TDP-43 to another ALS dis-
ease protein, ubiquilin-2, which also harbors a
ubiquitin-like domain (Hanson et al. 2010;
Deng et al. 2011).

More recent studies, however, suggest that
the TDP-43 NTD contains additional structural
elements, including two b-strands that form a
b-hairpin, which is not found in the ubiquitin
fold (Mompean et al. 2016). Thus, the TDP-43
NTD may more closely resemble the C-terminal
Dix domain of Axin 1 (Mompean et al. 2016).
This finding suggests that the TDP-43 NTD
may be more likely to bind cationic protein
structures rather than nucleic acids (Mompean
et al. 2016).

The structure of a TDP-43 construct com-
prising both RRMs (amino acids 102–269)
bound to UG-rich RNA oligonucleotide, AUG12
(50-GUGUGAAUGAAU-30), revealed that RRM1
and RRM2 adopt a canonical RRM fold
(b1a1b2b3a2b4) with an additionalb-hairpin
(b30b300) inserted between a2 and b4 (Fig. 1C)
(Lukavsky et al. 2013). The b-hairpin insertion
creates an expanded b-sheet surface accessible
for RNA binding (Fig. 1C) (Lukavsky et al.
2013). An extended, positively charged groove
on the b-sheet surface accommodates the
AUG12 RNA in a single-stranded conformation
in which 10 of the 12 nucleotides directly con-
tact the protein (Lukavsky et al. 2013). Impor-
tantly, six of these G or U nucleotides are rec-
ognized sequence specifically, which explains
the specificity of TDP-43 for UG-rich RNA (Lu-
kavsky et al. 2013). The RNA is bound in a 50 to
30 direction from RRM1 to RRM2 (Fig. 1C), in
contrast to several other tandem RRM proteins
that engage RNA in a 50 to 30 direction from
RRM2 to RRM1 (Lukavsky et al. 2013). A cen-
tral G nucleotide engages both RRM1 and
RRM2 and thereby stabilizes a specific tandem
RRM arrangement, which enables TDP-43 to
bind RNA and promote splicing activity (Lu-
kavsky et al. 2013). Indeed, splicing repression

by TDP-43 is mediated by sequence specificity
for UG-rich RNA encoded by both RRMs, high-
affinity RNA binding by RRM1, and exact
spatial positioning of the RRMs relative to one
another (Lukavsky et al. 2013).

The C-terminal, low complexity PrLD of
TDP-43 (amino acids 277–414) is enriched in
uncharged polar amino acids and glycine and
contains two tracts (amino acids 277–293 and
346–378) that are predicted to be intrinsically
unfolded (Cushman et al. 2010; King et al.
2012). The unusual amino acid composition
of the PrLD resembles that of canonical prion
domains of various yeast proteins, including
Sup35 and Mot3 (Cushman et al. 2010; King
et al. 2012; Li et al. 2013). In Sup35 and Mot3,
the prion domain can switch from an intrin-
sically unfolded state to a prion conforma-
tion (i.e., self-templating and infectious fibrils
possessing a cross-b-amyloid conformation)
(Shorter and Lindquist 2005; Alberti et al.
2009; Halfmann et al. 2012). In yeast, Sup35
and Mot3 prions can be beneficial (Shorter
and Lindquist 2005; Halfmann et al. 2012).
Thus, by analogy, TDP-43 might also access
beneficial prion or amyloid states, which might
be involved in RNA-based cellular memories or
epigenetic states connected to transcriptional
memory (Shorter and Lindquist 2005; King
et al. 2012). Here, precedent is provided by an-
other RBP, CPEB, which forms prions via a re-
lated prion domain that may underpin long-
term potentiation (Si et al. 2003a,b, 2010;
Shorter and Lindquist 2005; Majumdar et al.
2012; Drisaldi et al. 2015; Fioriti et al. 2015;
Khan et al. 2015; Stephan et al. 2015). Likewise,
another RBP with a prion domain, Rim4, forms
functional amyloid-like structures that repress
translation of cyclin CLB3 in meiosis I, thereby
ensuring homologous chromosome segregation
(Berchowitz et al. 2015; Ford and Shorter 2015).
Regardless, the TDP-43 PrLD is critical for var-
ious TDP-43 functions and mediates important
protein–protein interactions (Ayala et al. 2005;
Buratti et al. 2005; D’Ambrogio et al. 2009;
Kim et al. 2010; Kawahara and Mieda-Sato
2012). The PrLD of TDP-43 mediates phase
transitions to higher-order liquid- or gel-like
multimeric states that likely help organize func-
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tional and highly dynamic TDP-43 RNP gran-
ules (Johnson et al. 2009; Liu-Yesucevitz et al.
2011; Han et al. 2012; Kato et al. 2012; Wang
et al. 2012; Li et al. 2013; Saini and Chauhan
2014; Guo and Shorter 2015; Lin et al. 2015;
Molliex et al. 2015). Specifically, the phase tran-
sition of the PrLD of TDP-43 is mediated by an
a-helix and conserved residues in the 321-340
region (Conicella et al. 2016). Remarkably, the
PrLD of TDP-43 can be replaced with the prion
domain of Sup35, yielding a TDP-43 hybrid
protein that can still assemble into dynamic
granules and function in alternative splicing
(Wang et al. 2012). The dynamic phase-transi-
tioning behavior mediated by the TDP-43 PrLD
enables rapid assembly and disassembly of RNP
granules, but is likely to simultaneously render
TDP-43 prone to accessing deleterious mis-
folded states or pathological aggregates that
contribute to disease (Hart and Gitler 2012;
King et al. 2012; Buchan et al. 2013; Li et al.
2013; Ramaswami et al. 2013; Guo and Shorter
2015; Lin et al. 2015; Molliex et al. 2015).

TDP-43 MISFOLDING AND PATHOGENESIS
IN ALS

TDP-43 forms pathological inclusions in de-
generating neurons of ALS patients (Arai et al.
2006; Neumann et al. 2006). The inclusions are
typically cytoplasmic, and, consequently, TDP-
43 is depleted from the nucleus (Arai et al. 2006;
Neumann et al. 2006). However, nuclear TDP-
43 inclusions can also be observed in neurons
and glia (Arai et al. 2006; Neumann et al. 2006).
In ALS, TDP-43 shows abnormal phosphoryla-
tion, ubiquitylation, aberrant lysine acetylation,
and accumulation of C-terminal fragments
comprising the PrLD and a portion of RRM2
(Arai et al. 2006; Neumann et al. 2006; Cohen
et al. 2015). More than 40 mutations in TDP-43
are now connected to sporadic and familial ALS
as well as FTLD-TDP, and, remarkably, the vast
majority of these mutations reside in the PrLD
(Gitcho et al. 2008; Kabashi et al. 2008; Sreed-
haran et al. 2008; Pesiridis et al. 2009; Lattante
et al. 2013). The loss of nuclear TDP-43 in de-
generating neurons of ALS patients indicates
that a loss of nuclear TDP-43 function likely

contributes to disease (Lee et al. 2012; Li et al.
2013; Ling et al. 2013). Moreover, the sequestra-
tion of TDP-43 in misfolded structures in the
cytoplasm also indicates a loss of cytoplasmic
function as well as a toxic gain of function (Lee
et al. 2012; Li et al. 2013; Ling et al. 2013). In-
deed, TDP-43 clearance by autophagy induc-
tion mitigates neurodegeneration (Barmada
et al. 2014; Scotter et al. 2014). In our view, it
seems probable that TDP-43 pathogenesis in
ALS reflects a combination of loss-of-function
and gain-of-toxic function phenotypes (Lee
et al. 2012; Li et al. 2013; Ling et al. 2013).

In isolation, pure TDP-43 is intrinsically ag-
gregation prone and upon agitation rapidly as-
sembles into pore-shaped oligomers and fibrils
(Johnson et al. 2009; Couthouis et al. 2011;
Fang et al. 2014). The pore-shaped TDP-43
oligomers bear remarkable ultrastructural sim-
ilarity to toxic oligomers formed by other
neurodegenerative disease proteins, including
a-synuclein and Ab (Lashuel et al. 2002). An
oligomer-specific antibody, A11, which detects
toxic oligomers formed by diverse neurodegen-
erative disease proteins (Kayed et al. 2003), also
recognizes these pure TDP-43 oligomers (Fang
et al. 2014). Moreover, purified TDP-43 oligo-
mers are toxic to neurons in culture and also
display localized neurotoxicity in vivo when in-
jected directly into the mouse hippocampus
(Fang et al. 2014). Similar TDP-43 oligomers
can also be detected in the brains of transgenic
TDP-43 mice and FTLD-TDP patients, but not
in controls (Fang et al. 2014). These findings
indicate that TDP-43 oligomers might contrib-
ute to pathogenesis.

It is likely, however, that components of the
proteostasis network, including endogenous
RNA substrates and interacting proteins, pre-
vent rapid TDP-43 misfolding in vivo. Indeed,
RNA ligands, including oligonucleotides from
the 30UTR of the TDP-43 mRNA, prevent TDP-
43 aggregation in vitro and preserve TDP-43 in
its native dimeric state (Huang et al. 2013; Sun
et al. 2014). Accordingly, lysine acetylation
events that impair RNA binding or mutation
of conserved phenylalanines in the RRMs (es-
pecially RRM1) that engage RNA promote
TDP-43 aggregation in cells (Elden et al. 2010;
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Wang et al. 2012; Cohen et al. 2015). However, it
is critical to note that simple TDP-43 aggrega-
tion alone does not suffice to confer toxicity in
multiple model systems (Johnson et al. 2008;
Elden et al. 2010; Voigt et al. 2010). Thus, over-
expression of RNA-binding defective TDP-43
variants leads to TDP-43 misfolding and aggre-
gation, but not toxicity (Johnson et al. 2008;
Elden et al. 2010; Voigt et al. 2010). These find-
ings suggest that RNA binding by TDP-43 and
TDP-43 misfolding are required for toxicity
(Johnson et al. 2008; Elden et al. 2010; Voigt
et al. 2010). Hence, interfering with either
RNA binding by TDP-43 or TDP-43 misfolding
might be sufficient to alleviate toxicity.

Why is the combination of RNA binding
and protein misfolding so critical for TDP-43
toxicity? Misfolded forms of TDP-43 might se-
quester essential RNA molecules, RBPs, or both
to promote neurodegeneration (Polymenidou
et al. 2011; Tollervey et al. 2011; Armakola
et al. 2012). In fact, misfolding might cause
TDP-43 to bind RNA more tightly, as with Aply-
sia CPEB (Si et al. 2003b). RNA could stabilize
or divert TDP-43 to access specific misfolded
forms that are particularly neurotoxic. Indeed,
different RNAs might even engender TDP-43 to
fold into different misfolded forms or fibril
“strains,” some of which might be extremely
toxic. In this regard, it is interesting to note
that RNA can enable mammalian PrP to more
readily access infectious conformations (De-
leault et al. 2003; Wang et al. 2010, 2011a,b).
Thus, perhaps certain RNAs enable TDP-43 to
populate specific, deleterious self-templating
conformers. Further studies at the pure protein
level are necessary to test these hypotheses and
to define misfolding trajectories followed by
TDP-43 under different conditions.

Importantly, the TDP-43 PrLD drives TDP-
43 misfolding, as deletion of the PrLD prevents
spontaneous TDP-43 aggregation in isolation
(Johnson et al. 2009). Indeed, deletion of a
short segment (amino acids 311–320) within
the PrLD precludes TDP-43 aggregation in vitro
(Saini and Chauhan 2011). PrLD deletion pre-
vents aberrant TDP-43 misfolding events and
toxicity in various model systems (Johnson
et al. 2008; Ash et al. 2010; Wang et al. 2012).

Moreover, increased expression of C-terminal
fragments of TDP-43 that harbor the PrLD
confers toxicity and cytoplasmic TDP-43 aggre-
gation in several settings (Johnson et al. 2008;
Zhang et al. 2009; Ash et al. 2010; Yang et al.
2010; Pesiridis et al. 2011; Caccamo et al. 2012).
Interestingly, although not required for mis-
folding in vitro or in yeast (Johnson et al.
2008, 2009), determinants in the TDP-43
NTD also contribute to the recruitment of
full-length TDP-43 to the aggregated state and
its subsequent inactivation (Budini et al. 2015;
Romano et al. 2015). Moreover, under some
conditions in mammalian cells, the N-terminal
10 residues of TDP-43 are important for the
cytoplasmic aggregation of TDP-43 variants
bearing a mutated NLS that precludes nuclear
import (Zhang et al. 2013). These findings raise
the possibility that TDP-43 might form a spec-
trum of distinct misfolded, aggregated struc-
tures, which can vary depending on the precise
conditions.

Remarkably, nearly all the ALS-linked mu-
tations in TDP-43 are located in the PrLD (Lat-
tante et al. 2013). A yeast model of TDP-43
proteinopathy combined with pure protein bi-
ochemistry suggests that ALS-linked TDP-43
variants fall into two distinct classes (Johnson
et al. 2008, 2009). The first class of ALS-linked
TDP-43 mutations has no effect on TDP-43
misfolding in vitro and does not promote tox-
icity in yeast and includes G294A (Johnson et al.
2009). These findings suggest that some ALS-
linked TDP-43 mutations in the PrLD do not
impact misfolding events directly. The second
class of ALS-linked TDP-43 mutations, includ-
ing Q331K and M337V, accelerates spontaneous
TDP-43 misfolding in isolation and potentiates
TDP-43 toxicity in yeast (Johnson et al. 2009).
These mutations also alter the phase-separation
properties of TDP-43 (Conicella et al. 2016;
Schmidt and Rohatgi 2016). Moreover, Q331K
shows greater toxicity than WT TDP-43 in Dro-
sophila (Elden et al. 2010). Indeed, similar ef-
fects of ALS-linked mutations in promoting
TDP-43 misfolding and toxicity have been un-
covered in diverse model systems, including
pure protein settings, cell culture, flies, chicken
embryos, mice, and rats (Sreedharan et al. 2008;
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Zhang et al. 2009; Barmada et al. 2010; Kabashi
et al. 2010; Li et al. 2010; Ritson et al. 2010; Guo
et al. 2011; Lim et al. 2016). Collectively, these
findings indicate that a subset of ALS-linked
TDP-43 variants likely cause disease by a gain-
of-toxic function mechanism (Gitler and Shor-
ter 2011).

It is important to note, however, that loss of
TDP-43 function also plays a key role in patho-
genesis, as selective depletion of TDP-43 from
neurons causes neurodegeneration in vivo (Fei-
guin et al. 2009; Wu et al. 2012; Iguchi et al.
2013). Moreover, depletion of TDP-43 from
mouse embryonic stem cells causes a defect in
repression of cryptic exons and cell death (Ling
et al. 2015). Loss of nuclear function is antici-
pated from the nuclear depletion of TDP-43, as
is loss of cytoplasmic function because of TDP-
43 sequestration in inclusions (Lee et al. 2012; Li
et al. 2013; Ling et al. 2013). However, ALS-
linked TDP-43 mutations can also cause loss
of cytoplasmic TDP-43 function in the spatially
restricted context of functional mRNP granules
(Alami et al. 2014; Jovicic and Gitler 2014).
TDP-43 assembles into cytoplasmic mRNP
granules in neurons that show bidirectional, mi-
crotubule-dependent transport, which facili-
tates delivery of target mRNAs to distal neuro-
nal compartments (Alami et al. 2014; Jovicic
and Gitler 2014). The ALS-linked TDP-43 var-
iants A315T, M337V, and G298S impair this
transport activity, suggesting a partial loss of
this cytoplasmic function (Alami et al. 2014;
Jovicic and Gitler 2014). Thus, altered mRNP
granule assembly or dynamics might contribute
to neurodegeneration, and restoring functional
RNP granule assembly, dynamics, or disassem-
bly may have therapeutic utility (Li et al. 2013;
Ramaswami et al. 2013).

Does TDP-43 access a bona fide prion or
prion-like form? An interesting facet of ALS is
the gradual spread of pathology from initiating
sites to contiguous areas of the brain, which
involves multiple cell types (Ravits and La
Spada 2009). This pattern of disease spread
has led to suggestions that a prion-like agent
might be involved (Cushman et al. 2010; Poly-
menidou and Cleveland 2011, 2012; Udan and
Baloh 2011; King et al. 2012; Grad et al. 2015;

Maniecka and Polymenidou 2015; Josephs et al.
2016). Intriguingly, phosphorylated TDP-43
pathology in ALS has been interpreted to spread
in a sequential manner with highly discernible
stages that might indicate involvement of axonal
pathways (Brettschneider et al. 2013, 2014; Lu-
dolph and Brettschneider 2015).

However, does the PrLD of TDP-43 enable
TDP-43 to access an infectious, self-templating
amyloid form just like the prion domains of
various yeast prion proteins (Shorter and Lind-
quist 2005)? Full-length TDP-43 purified under
native conditions does not appear to readily
form a classic amyloid structure recognized by
diagnostic amyloid dyes such as thioflavin T or
Congo red (Johnson et al. 2009). Likewise, ALS
pathology is typically devoid of amyloid struc-
tures recognized by these dyes (Neumann et al.
2007), although, in a subset of ALS cases, TDP-
43 skeins are recognized by thioflavin S and
contain TDP-43 fibrils (Robinson et al. 2013).
Short, synthetic peptides derived from the
PrLD of TDP-43 can access toxic amyloid con-
formers (Chen et al. 2010; Guo et al. 2011).
However, these short peptides do not occur nat-
urally, and so their relevance is uncertain.
Moreover, the vast majority of proteins harbor
short peptides able to form amyloid in isolation
(Goldschmidt et al. 2010). Intriguingly, TDP-
43 and C-terminal TDP-43 fragments (193–
414) purified under denaturing conditions
can form fibrils that do not bind thioflavin
T, but seed TDP-43 aggregation in vitro and in
cell culture (Furukawa et al. 2011). Moreover,
detergent-insoluble fractions purified from
ALS brains containing TDP-43 fibrils induced
aggregation of endogenous TDP-43 in neuro-
blastoma cells in culture (Nonaka et al. 2013).
Thus, TDP-43 may indeed be able to access a
prion-like conformation, which may even be
transmitted across axon terminals (Feiler et al.
2015). However, convincing evidence of trans-
missible prion-like TDP-43 conformers will
require their assembly from purely synthetic
protein followed by induction of neurodegener-
ative disease upon injection into transgenic or
WT mice, as has been achieved with PrP and
a-synuclein (Legname et al. 2004; Colby et al.
2009; Wang et al. 2010, 2011a,b; Luk et al. 2012).
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AN RBP WITH A PrLD HAS EMERGED
IN SEVERAL NEURODEGENERATIVE
DISEASE SETTINGS
In addition to TDP-43, another �70 human
RBPs harbor PrLDs of similar low complexity
sequence and amino acid composition to do-
mains that drive prionogenesis of yeast proteins
like Sup35 (Cushman et al. 2010; King et al.
2012; Kim et al. 2013; March et al. 2016). These
include FUS, TAF15, EWSR1, hnRNPA1, and
hnRNPA2/B1, which have all surfaced as mis-
folded RBPs in the etiology of neurodegenera-
tive diseases (Kwiatkowski et al. 2009; Vance
et al. 2009; Cushman et al. 2010; Lagier-Tou-
renne et al. 2010; Couthouis et al. 2011, 2012,
2014; Neumann et al. 2011; Sun et al. 2011;
King et al. 2012; Mackenzie and Neumann
2012; Kim et al. 2013; Ling et al. 2013; March
et al. 2016). It is now widely thought that PrLDs
enable RBP function and mediate phase transi-
tions that partition functional ribonucleopro-
tein compartments (Kato et al. 2012; Li et al.
2013; Ramaswami et al. 2013). This PrLD activ-
ity, however, renders RBPs prone to populating
deleterious oligomers or self-templating fibrils
that might spread disease, and disease-linked
PrLD mutations can exacerbate this risk (Kim
et al. 2013; Ramaswami et al. 2013; Shorter and
Taylor 2013). One particularly clear case in-
volves mutations in hnRNPA1 and hnRNPA2
that underpin MSP (Kim et al. 2013; Shorter
and Taylor 2013). Here, a conserved gatekeeper
aspartate residue in the exact same position of
the hnRNPA1 or hnRNPA2/B1 PrLD is mutat-
ed to valine (Kim et al. 2013; Shorter and Taylor
2013). Thus, the D262V mutation in hnRNPA1
or the D290V mutation in hnRNPA2 introduces
a potent amyloidogenic steric zipper into the
PrLD that accelerates hnRNP misfolding into
self-templating fibrils and cytoplasmic-inclu-
sion formation (Kim et al. 2013; Shorter and
Taylor 2013). Remarkably, very similar muta-
tions in the PrLD of hnRNPDL, D378N, or
D378H have now been linked to limb-girdle
muscular dystrophy type 1G (Vieira et al.
2014). We predict that human proteins bearing
PrLDs will continue to emerge in the etiology of
protein-misfolding disorders and degenerative
diseases (King et al. 2012; March et al. 2016).

STABILIZING NATIVE TDP-43 DIMERS
AS A THERAPEUTIC STRATEGY

In the closing sections of this review, we consid-
er possible therapeutic approaches to combat
TDP-43 proteinopathies. The only small-mole-
cule drug treatment available for neurodegen-
erative disorders that targets the underlying
protein-misfolding events that cause disease is
Tafamidis (Bulawa et al. 2012; Nencetti et al.
2013). Tafamidis is used to treat transthyretin
(TTR)-related hereditary amyloidosis (also
known as familial amyloid polyneuropathy), a
rare but deadly neurodegenerative disease (Bu-
lawa et al. 2012; Nencetti et al. 2013). Tafamidis
functions by stabilizing the correctly folded, na-
tive tetramer of TTR, thereby preventing TTR
tetramer dissociation, which is the first and rate-
limiting step of TTR amyloidogenesis (Ham-
marstrom et al. 2003; Hurshman et al. 2004;
Bulawa et al. 2012). Based on this strong prece-
dent, a potentially powerful therapeutic strategy
might be to isolate small molecules or other
agents that stabilize the native dimeric state of
TDP-43 and thereby prevent misfolding (Zhang
et al. 2013). Interestingly, endogenous RNA li-
gands may already provide this activity (Sun
et al. 2014), which could be mimicked by spe-
cific aptamers.

RESTORING NUCLEAR TDP-43
VIA MODULATION OF NUCLEAR
TRANSPORT

TDP-43 depletion from the nucleus is widely
thought to be a critical event in pathogenesis
(Lee et al. 2012; Li et al. 2013; Ling et al.
2013). One potential therapeutic strategy could
be to restore nuclear TDP-43 by inhibiting
TDP-43 nuclear export or stimulating TDP-43
nuclear import. Thus, small molecules that in-
hibit expression of nuclear export factors or in-
crease expression of nuclear import factors
could be useful. Likewise, small-molecule in-
hibitors of nuclear export or small-molecule
enhancers of nuclear import could be advanta-
geous. Encouragingly, orally administered re-
versible inhibitors of the nuclear export factor
Crm1 (which decodes the TDP-43 NES) signif-
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icantly attenuated mouse models of inflamma-
tory demyelination and other models of axonal
damage (Haines et al. 2015). Importantly, in
neurons, Crm1 inhibitors prevented nuclear ex-
port of factors connected with axonal damage
while retaining transcription factors in the nu-
cleus that promote neuroprotection (Haines
et al. 2015). It will be interesting to test whether
these Crm1 inhibitors display efficacy against
neuronal or animal models of TDP-43 protein-
opathy.

INHIBITING OR REDUCING EXPRESSION
OF ATAXIN 2

Genome-wide screens in yeast have uncovered
a number of genetic suppressors of TDP-43
toxicity (Elden et al. 2010; Sun et al. 2011;
Armakola et al. 2012). Among these, deletion
suppressors are of particular interest because
they could be targeted by small-molecule in-
hibitors or siRNA or antisense strategies. Dele-
tion of the yeast homolog of Ataxin 2, Pbp1,
suppresses TDP-43 toxicity in yeast (Elden
et al. 2010). Moreover, reduced expression of
Ataxin 2 in Drosophila mitigates TDP-43 tox-
icity (Elden et al. 2010). Polyglutamine expan-
sions (.34 Qs) in Ataxin 2 cause the neuro-
degenerative disease spinocerebellar ataxia type
2 (Imbert et al. 1996; Pulst et al. 1996; Loren-
zetti et al. 1997). Remarkably, intermediate
polyglutamine expansions (27–33 glutamines)
in Ataxin 2 are a common genetic risk factor
for ALS (Elden et al. 2010; Bonini and Gitler
2011; Lee et al. 2011a,b; Yu et al. 2011; Gispert
et al. 2012; Hart and Gitler 2012; Hart et al.
2012). Small-molecule inhibitors of Ataxin 2
could be valuable, but the precise functions
of Pbp1 and Ataxin 2 are not completely un-
derstood, although Pbp1 interacts with Pab1
and regulates mRNA polyadenylation and
stress-granule biogenesis (Mangus et al. 1998).
Another strategy would be to reduce Ataxin 2
expression via siRNA or antisense technology.
Encouragingly, Ataxin 2 deletion in mice is not
lethal and is associated with mild obesity phe-
notypes (Kiehl et al. 2006; Lastres-Becker et al.
2008), which augurs well for this potential
approach.

INHIBITING OR REDUCING EXPRESSION
OF Dbr1

The lariat-debranching enzyme, Dbr1, has also
emerged as a deletion suppressor of TDP-43 and
FUS toxicity in yeast (Armakola et al. 2012).
Dbr1 hydrolyzes 20 –50 prime branched phos-
phodiester bonds, which occur at the branch
point of excised lariat intron RNA, converting
them to linear RNA molecules that are then de-
graded (Chapman and Boeke 1991). When Dbr1
is deleted, intronic lariats accumulate and, sur-
prisingly, co-localize with TDP-43 inclusions in
the cytoplasm of yeast (Armakola et al. 2012).
Thus, these accumulated intronic lariat RNAs
mayact as a decoy and engage TDP-43 to prevent
the depletion or sequestration of essential cellu-
lar RNAs or RBPs (Armakola et al. 2012). Alter-
natively, lariat RNAs might engage TDP-43 and
alter its misfolding pathway such that more be-
nign TDP-43 structures accumulate. Important-
ly, depletion of Dbr1 from human neuronal cells
or primary rat neurons also reduced TDP-43
toxicity (Armakola et al. 2012; Sun and Cleve-
land 2012). Thus, the effect of reduced Dbr1
levels on TDP-43 toxicity is conserved from yeast
to mammals (Armakola et al. 2012). These ad-
vances suggest that small molecules that inhibit
Dbr1 activity or antisense strategies to reduce
Dbr1 expression could have therapeutic utility
in TDP-43 and FUS proteinopathies (Figley and
Gitler 2013).

TUNING eIF2a PHOSPHORYLATION
TO LIMIT STRESS-GRANULE ASSEMBLY

Stress granules are cytoplasmic RNP compart-
ments where nontranslating mRNAs, as well as
factors involved in translation repression and
mRNA decay, are partitioned when translation
is stalled or impeded in response to environ-
mental stress (Anderson and Kedersha 2008;
Li et al. 2013; Ramaswami et al. 2013). TDP-
43 co-localizes with stress granules, and it has
been proposed that prolonged stress-granule ac-
cumulation enables TDP-43 to access patholog-
ical conformers that cause neurodegeneration
(Li et al. 2013; Ramaswami et al. 2013). Thus,
agents that promote stress-granule disassembly
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or inhibit their initial assembly could have ther-
apeutic potential (Li et al. 2013; Ramaswami
et al. 2013). Indeed, several genetic modifiers
of TDP-43 and FUS toxicity in yeast are involved
in stress-granule assembly pathways (Sun et al.
2011; Kim et al. 2014). Interestingly, phosphor-
ylation of the translation initiation factor, eu-
karyotic translation initiation factor 2 (eIF2a),
decreases protein synthesis and induces stress-
granule formation (Thomas et al. 2011). Inhi-
bition of PERK (protein kinase RNA-like endo-
plasmic reticulum kinase), a critical effector of
unfolded protein response, by the small-mole-
cule GSK2606414 reduces eIF2a phosphoryla-
tion (Axten et al. 2012, 2013; Kim et al. 2014).
Remarkably, GSK2606414 mitigates TDP-43
toxicity in Drosophila and mammalian neurons,
presumably by restoring protein synthesis and
thereby antagonizing stress-granule formation
(Kim et al. 2014). Moreover, orally administered
GSK2606414 is profoundly neuroprotective and
prevents clinical disease in prion-infected mice,
as do other strategies to reduce eIF2aphosphor-
ylation (Moreno et al. 2012, 2013). Unfortu-
nately, however, GSK2606414 also causes weight
loss and mild hyperglycemia, which is likely a
result of an inhibition of PERK that is too severe
in the pancreas (Harding et al. 2001; Moreno
et al. 2013). Thus, alternative strategies to phar-
macologically modulate translational inhibition
caused by phosphorylated eIF2a could be op-
portune. Interestingly, the small molecule N,N0-
trans-(cyclohexane-1,4-diyl)-bis-(2-(4-chloro-
phenoxy)acetamide (ISRIB) prevents transla-
tional inhibition downstream from eIF2a phos-
phorylation (Sidrauski et al. 2013). Remarkably,
ISRIB conferred neuroprotection in prion-dis-
eased mice without pancreatic toxicity (Halli-
day et al. 2015). Moreover, ISRIB induces the
rapid dissolution of preformed stress granules,
thereby releasing sequestered mRNAs for trans-
lation (Sidrauski et al. 2015). It will be of great
interest to determine whether ISRIB also coun-
ters TDP-43 toxicity. Finally, tuning eIF2a
phosphorylation to cytoprotective rather than
cytotoxic levels via inhibition of specific regula-
tory subunits of protein phosphatases (e.g., us-
ing guanabenz and Sephin1) has also yielded
promising results in restoring protein homeo-

stasis and preventing neurodegeneration (Tsayt-
ler et al. 2011; Vaccaro et al. 2013; Das et al.
2015), and should be explored further in TDP-
43 proteinopathy models.

ENGINEERED PROTEIN DISAGGREGASES
TO REACTIVATE MISFOLDED TDP-43

Another promising therapeutic strategy is to
uncover agents that reverse TDP-43 misfolding
and restore TDP-43 to native structure and
function (Shorter 2008, 2016; Jackrel and
Shorter 2015). Such agents would contempora-
neously eliminate any deleterious loss of func-
tion or toxic gain of function caused by mis-
folded TDP-43 (Jackrel and Shorter 2015).
Moreover, any self-templating TDP-43 con-
formers that might spread pathology and any
intrinsically toxic oligomeric forms of TDP-43
would also be cleared (Jackrel and Shorter
2015). We have engineered potentiated variants
of Hsp104, an AAAþ ATPase and protein disag-
gregase from yeast, by introducing single mis-
sense mutations into the autoinhibitory middle
domain (Jackrel and Shorter 2015). These po-
tentiated Hsp104 variants solubilize preformed
TDP-43 fibrils in vitro and suppress toxicity of
TDP-43 and ALS-linked variants in yeast (Jack-
rel and Shorter 2014a,b, 2015; Jackrel et al.
2014a,b; Sweeny et al. 2015; Torrente et al.
2016). Remarkably, potentiated Hsp104 vari-
ants also eliminate TDP-43 inclusions and re-
store nuclear TDP-43 localization in yeast, phe-
notypes that could be transformative if they
were achieved in ALS patients (Jackrel and
Shorter 2014a, 2015; Jackrel et al. 2014a). The
challenge ahead is to apply engineered Hsp104
variants to neuronal and animal models of
TDP-43 proteinopathies (Jackrel and Shorter
2015).

Hsp104 is absent in metazoa (Shorter 2008;
Erives and Fassler 2015). Thus, it is also imper-
ative to uncover human protein disaggregases
that might also reverse TDP-43 aggregation
and restore TDP-43 to the nucleus. Here, two
systems are of particular interest. First, Hsp110,
Hsp70, Hsp40, and the small heat shock pro-
teins collaborate to dissolve and reactivate pro-
teins trapped in disordered aggregates (Shorter
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2011; Duennwald et al. 2012; Rampelt et al.
2012; Mattoo et al. 2013; Torrente and Shorter
2013; Nillegoda et al. 2015). Hsp110, Hsp70,
and Hsp40 can also depolymerize preformed
amyloid fibrils (Duennwald et al. 2012; Gao
et al. 2015). Moreover, Hsp110, Hsp70, and
Hsp40 are important for the resolution of stress
granules after stress (Cherkasov et al. 2013;
Kroschwald et al. 2015; Walters et al. 2015;
Jain et al. 2016). Second, the highly conserved
AAAþ ATPase, VCP, not only can drive clear-
ance of stress granules via autophagy but also
can potentially release soluble proteins in the
process (Buchan et al. 2013; Ramaswami et al.
2013). Intriguingly, VCP mutations are a cause
of ALS (Johnson et al. 2010; Shaw 2010), and
ALS-linked VCP variants show defects in stress-
granule clearance and perturb TDP-43 proteo-
stasis (Ritson et al. 2010; Buchan et al. 2013;
Ramaswami et al. 2013). It will be important
to determine whether the Hsp110 system or
the VCP system can counter TDP-43 aggrega-
tion and toxicity. Moreover, based on earlier
studies on Hsp104 (Jackrel and Shorter 2015),
it might also be possible to engineer the Hsp110
or VCP system to more effectively reverse TDP-
43 misfolding. Finally, it will also be of great
interest to uncover small-molecule activators
that enhance the disaggregase activity of the
Hsp110 system or the stress-granule clearance
activity of VCP (Shorter 2016). In this way, we
may directly reverse the TDP-43 misfolding
events that underpin diverse neurodegenerative
disorders.

OUTLOOK

Although there continue to be no effective ther-
apeutics for ALS or other TDP-43 proteinopa-
thies, it is clear that the past several years have
yielded a transformative change in our under-
standing of these diseases and their underlying
mechanisms. To develop innovative therapies
and uncover novel targets, we need to more fully
understand the complexity of TDP-43’s struc-
ture, function, biology, misfolding, and patho-
genesis. This endeavor will require a major fo-
cused effort in basic research before translation
to the clinic. Moreover, we suggest that thera-

pies able to combine some of the approaches
outlined above could yield synergistic advances
similar to combination therapies that have been
successfully deployed to restore proteostasis,
eliminate yeast prions, and combat cystic fibro-
sis and HIV (Clavel and Hance 2004; Mu et al.
2008; Roberts et al. 2009; Duennwald and
Shorter 2010; Shorter 2010; Wainwright et al.
2015).
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